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PARALLEL SOLUTION OF LINEAR SYSTEMS WITH

STRIPED SPARSE MATRICES *

Part 2: STIFFNESS MATRICES; A CASE STUDY

RAMI MELHEM *

Abstract

-'The stripe structures of stiffness matrices resulting

from 'trteouja? domains covered by regular grids are

analyeed.,- It .s if9Qed that the non-zero elements in these

makfice may be dered by very few stripes, and that these

stritep may be nori.verlapping, if the nodes of the grids

are numbered appropriatly. The exact number of stripes,

which is independent of the size of the problem, is derived

for different types of grids, and different numbering

schemes. The stripe structures of some irregular grids are

also examined. " .
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1. INT1 ODucT ION

Many techniques have been suggested for the efficient

solution of sparse linear systems; they involve often highly

irregular storage schemes and manipulation algorithms for

the non-zero elements in the matrix (4]. Although, these

techniques lead to very powerful sequential implementations

(see e.g. [3]), they are not at all suitable for parallel

architectures. In fact, parallel processing requires, in

general, a rather regular pattern of computation in order to

minimize data conflict and communication delays.

In Part 1 of this presentation (see (6]), a method is

- introduced for representing all non-zero elements of a

sparse matrix in a stripe structure that provides, in some

sense, a compromise between efficiency and regularity. More

specifically, the stripe structure is shown to possess

enough regularity to allow for the design of some efficient

networks for the parallel manipulation of sparse matrices.

Two networks, namely MAT/VEC for the multiplication of a

matrix by a vector, and TRIANG, for the solution of triangu-

lar systems, are given as examples.

Very briefly, a stripe S of an nxn matrix A is a set

of positions that contains at most one position, (i,j), of AI for every row i; that is, Sk - ((i,ok(i)) : ieIIn) where

n1,...n and ak is a strictly increasing function. Two

stripes Sk and S are ordered byS < S if, for any i and j
k*;. q k q

in the domains of ak and aq, respectively, ! Codes
.dor

'Ok "PeciaI
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i a j implies ok(i) < aq(j) (1)

A stripe structure of the matrix A is then defined as a

disjoint union of stripes Sk, k-l,...,v, which satisfies

Sk (Sk+, and contains all the non zero elements of A. More

specifically, if a ijO, then, there should exist a unique

k, such that (i,j)eSk. Also, the stripes 0 I..'Sw, are

said to be non-overlapping if

ak(i) ' ak+m(i-m) (2)

for any integers k, i and m such that (i,a ())eSk and

(i-m,ak+m(i-m))ESk+m. If the inequality in 12) is strict,

then the stripes are called strictly non-overlapping.

The linear network MAT/VEC suggested in [6] for the

multiplication of a matrix A by a vector x consists of v

cells, where v is the number of stripes in the representa-

tion of A (called the stripe count). Every two consecutive

cells k and k+l in MAT/VEC are connected by two unidirec-

tional communication links, where a link is regarded as a

queue that may buffer data between cells k and k+l. One of

the links is directed from k+l to k and transmits the ele-

ments of the input vector x, and the other is directed from

k+l to k and transmits the elements of the result vector

y-Ax. The network is data driven in the sence that the

operation of each cell is initiated by the availability of

its input.

In order to estimate the running time of MAT/VEC, it is

A u~s& ~.~ .. 'J ~ ~ *:~~ . L -r#
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assumed that the execution alternates between two phases,

namely a communication phase, and a processing phase. In

[6], it is shown that if the input matrix to MAT/VEC has

non-zero diagonal elements, and non-overlapping stripes,

then no data conflict occurs, and the execution terminates

in n global cycles, where a global cycle consists of a com-

munication phase followed by a processing phase. The time

for a processing phase is roughly that of one floating point

operation, while the time for a communication phase depends

on the slopes of the stripes of the matrix.

In this paper, we consider a major source of large

sparse matrices; namely, finite elements and finite differ-

ence discretizations of partial differential equations

(PDE). More specifically, we study the stripe structure of

stiffness matrices that result from discretizations on

irregular domains using regular grids. First, we specify in

Section 2 the types of domains and grids used in the study.

Then, in Section 3, we show that for matrices resulting from

these types of grids, a stripe structure with very few

.i . stripes may be introduced, but the resulting stripes do, in

general, overlap. In order to obtain non-overlapping

stripes, we suggest , in Section 4, a multicolor numbering

scheme that spreads the stripes within a matrix7 and thus

disengages any overlap between stripes. The multicolor

numbering is shown, in Section 5, to decrease the maximum

separation between stripes, which minimizes the number of

data items that should be buffered, at any give time, on the

- - , .C.
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communication links of MAT/VEC. Finally, in Section 6, we

estimate the execution time of MAT/VEC for some specific

stiffness matrices.

-4.
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2.- rgr £ER EC A1arlr.Aft 12DM&LNS

Let Q be a rectangular domain that is covered by a grid

M with lines parallel to the sides of Q. If we remove from
Q

Q any number of rectangular subdomains whose boundaries

coincide with some lines in MQ, then we obtain a new domain

fl c Q, which we will call a pierced rectangular domain. The

part of M that covers n is denoted by Mn and is called a

* .pierced rectangular grid (see Fig l(b)).

[.i (a) a rectangular grid M (b) a pierced rectangular grid Mn

(c) an irregular domain (d) an irregular grid MD
covered by M~n isomorphic to n

i Fig 1 - Examples of finite elements grids

If D is an irregular domain, we may approximate D by a

-- pierced rectangular domain and cover it by a pierced rec-

tangular grid (see Fig l(c)). Another alternative (usually

i :L
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used in automatic grid generation), is to map D, iso-

parametrically [9], into a pierced rectangular domain n,

cover na by a pierced rectangular grid Mn , and then map M.

back to a grid MD that covers D (see Fig l(d)). In this

case, the zero pattern of the stiffness matrix that results

from the discretization of a PDE on M. is the same as that

resulting from the discretization of the PDE on M.. For

this reason, we consider here only discretizations on

pierced rectangular grids.

Given a pierced rectangular domain fn covered by a gr.

M. that contains nn nodes, let MQ be a rectangular grid th%

includes M, and contains nQ nodes, n >nn. Each node in 4

may be identified by a unique number k, l)kdnQ, assigned toG

it by some numbering scheme (greek letters will be used to j
identify nodes in M ). On the other hand, the nodes in

Q M

may be renumbered such that each node keM n is assigned a

unique number I-v(k), l n.dn,,.

nafinitinn 1: A renumbering of Mn is said to be deduced from

the numbering of MQ if the number A-v(k), assigned to any

node k Mf is derived as follows:

1 -o0

For k -l,...,nQ Do

If XEM Then ( 1-L+i ; Y(X) - I )

Else ( v(k) is undefined )

d
Clearly, the renumbering function v satisfies the fol-

lowing relations:

IV 1 V.
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k > I <N,,> v(X) > v(A) (3.a)

k > an) k- it vM)-v(u) (3.b)

The inverse v of the function v will be used to map

"-: ":' the number I of any node in M. into its identity k=v (1) in

M Q It is also useful to define a function which deter-

mines, for each node 89M. , the smallest node larger than 8

that is in M . For uniformity, we define such a function for

any OeMQ as follows:

neirLintun 2: The function Next(&) M -M is defined by:

Ne O .1 min(A : AO and AeM ) if such A exists
Next(O) =nQ otherwise

Note that the minimum does not exist if every node AL- is

not in Mn , which may happen only if 8>v- (n,).[]

* .C Without entering into the details of the generation of

stiffness matrices, we just mention that the matrix A gen-

erated from the discretization of a PDE on M. is an nxn n

matrix in which each row I corresponds to a node k=v (1) in

M . The only non zero elements in row I of A are those at

positions (1,m), where Amv- (m) is a node that is a neighbor

to node X in M. The definition of neighboring nodes

depends on the specific discretization used. For example,

in finite element discretizations, two nodes are neighbors

if there exists an element that contains the two nodes.

L From the above discussion, it. is clear that the scheme

used to number the nodes determines the zero structure of

AP
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the matrix A. In the following subsections we consider two

different numbering schemes. For ease of reference, we

refer to the 5-points star finite difference discretization

by VD 5 , and to finite elements discretizations with 3-nodes

triangles, 6-nodes triangles, 4-nodes rectangles, and 9-

nodes rectangles by FE3, FE6 , 6' 4 ' and FE9 , respectively.

'7r

['N

',L' .

".4 '-

"-I ,I
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K ..-"LR N0D3 NUMERING

A regular node numbering is one in which the nodes are

numbered sequentially, column-wise or row-wise. We will con-

sider only column-wise numbering and note that our results

apply to row-wise numberings, as well.

Let M contains H horizontal lines and W vertical
Q

lines, and identify each node in MQ by the number assigned

to it by the column-wise numbering of MQ, that is, identify

the node located at the intersection of the ith horizontal

line and the jth vertical line of MQ by the integer (j-

l)Hi. It is easy to see that the column-wise numbering of

M is the one deduced from the above numbering of M Let v

be the renumbering function introduced in Definition 1.

Depending on the specific discretization, we may intro-

duce few functions that define the neighbors of each node X

in M For example, for FE4 discretization, the following

nine neighboring functions may be defined for each keM (see

Fig 2):
• k-H+l k+l k+H+l

-H k +H

--H-1 X-1 k+H-i

Fig 2 - the neighbors of node X

46',
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p4 (X) - X - H - 1 p (k) - k + H +1 (4
-3 (k) - k - H ; p3(k) - X + H

p-2(k) = k - H + 1 P2(k) = k + H - 1 (4)
P (k) = k - 1 pl(k) = k + 1

POKX) = k

Similar neighboring functions may be defined for other

discretizations, and then used to determine the stripe

structure of the corresponding matrix as illustrated by the

following theorem:

Theorem 1: Let the numbering of M. be deduced from that of

MQo and let A be the stiffness matrix that results from a

specific discretization of a PDE on M n (with' a specific

definition of neighboring nodes). If there exists v func-

tions Pk:MQ-MQ, k-l,...,v such that for any two neighboring

nodes X and IL in MQ, pk(k)=i, for some k, ldkAw, and the

functions pk satisfy

k < (k+lkl,..., (5.a)

Pk(X) < p+l(X) k-1,...,-i (5.b)

Then, it is possible to construct a stripe structure for A

with stripe count v.

Proof: Define, for k-l,...,', the following sets:

Sk = ((Iak(t)) ; idtdn n and ak(i) } (6)

where

V(pk (V-l if pk(v- (1)) C Mn

*0kt) - 1. otherwise

Where L and ? are used for "defined", and "not defined",
'S'
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respectively. It is readily seen that if the (1,m)th ele-

ment of A is non zero, then nodes v- (1) and v- (m) are

neighbors, and there exists a k such that v- (m)-Pk(v-1(0).

Thus, (i,m)eSk. In other words, every position of A that

has a non-zero element is in some set Ski laksv.

In order to prove that each set Sk? l'k~w, is a stripe,

we consider any two elements (L,ak(L)) and (m,ak(m)) in Sk

If i=-v(k) and m=v(I), then by the definition of ak, both

Pk(X) and Pk((A) are in Mn, and hence both v(pk(k)) and

v(pk() ) are defined. Now if I > m, then from (3.a) X >

and from (5.a) pk(X) > Pk(A). Thus v(Ok(X)) > v(pk(A)), that

• ':. is Ok(a) > ak(m), which proves that ok is a strictly

increasing function and that Sk is a stripe.

Finally, we need to show that Sk < k For this, we"Ak .Sk+l"

". consider the two elements (,aOk(1)) E Sk and (m,ak+l(m)) e

-k+l* Following the same steps as above, we may show that

if I % m, then k % A and Pk+l(k) % Pk+l(A). But from

(5.b), Ok+l(A) > Pk(), which leads to Ok+l(') > k(m) []

Note that the above theorem does not depend on the
specific numbering of M. For column wise numbering, the

functions (4) may be used (assuming H > 2) to prove the fol-

0 ,lowing:

;. r .olary 1: If the nodes in a pierced rectangular grid M
L

are numbered column-wise, then the matrix that results from

FE4 on M is a striped matrix with stripe count 9 [].
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Given that the matrix resulting from FE on has nine

parallel stripes [6], Corollary I proves that piercing MQ

and renumbering the nodes do not change the stripe count of

the matrix (however, the stripes are no longer parallel).

Results similar to Corrolary 1 may be proved for other

dificretizations (see table 1 for a summary). Although

these results indicate that the network MAT/VEC may be used

with the corresponding stiffness matrix, they do not guaran-

tee that the stripes of the matrix are non overlapping, and

thus, that the operation of MAT/VEC is not delayed due to

internal data conflict. For example, the matrix shown in

Fig 3(b), which has overlapping stripes, is obtained from

the column wise numbering of the pierced rectangular domain

shown in Fig 3(a).

FD5  FE3  FE 4  FE6  FE9

regular 5 7 9 19 25
3-color 7(NO) 9(NO) ll(NO) 23 29
5-color x x x 23(NO) 29(NO)

*) NO -Not overlapping if Lemma 2 applies

Table 1 - Stripe count for different numbering schemes

W'



e 36-13-8 ! 22 2 9 36

7'
CN

S 21 28 35

14 20 27 34

1326 3 3

4 12

311 19 25 32

2 24 31" 10 j18 2

9 17 23 30

(a) The grid (b) The FE4 matrix

Fig 3 - column-wise numbering

A. HULL I -Va NODE N1UMBE~RING

' ,
'

. Many multicolor numbering schemes have been used by

different authors to obtain stiffness matrices that have

some desirable properties (see e.g. E1,7,8]). In this sec-

tion, we introduce a multicolor scheme that spreads apart

the stripes of I such that they do not overlap, we consider

only 3-color numbering, and we assume that H-3h-l, for some

integer h. This may be satisfied, always, by increasing the

height of M appropriately.
Q

."In order to explain the 3-color numbering scheme, we

assume that each horizontal line in bf is given a color.

Namely, lines l,4,.. .3h-2 are white, lines 2,5,...,3h-1 are

black, and lines 3,6,...,3h-3 are red. Numbers are, then,

assigned to the nodes in M as follows:

For each column J-,...,w Do

6. 1) number the nodes in the white lines of column j,
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2) number the nodes in the black lines of column j,

3) number the nodes in the red lines of column J,

The 3-color numbering of the nodes of M is then the

numbering deduced from the 3-color numbering of M As an

example, we show in Fig 4(a) the 3-color numbering of the

same grid of Fig 3(a).

black 6 14 20 27 34

white 3 131

red 8 36
16 22 29

black 5 13 26 33

white 2 10

red 7 15 35

black 4 21 28 32
12 19 2

white 1 "1_

9 17 23 30

(a) The grid (b) The FE matrix
Fig 4 3-colors numbering schema

As we did for regular numbering, we assume that FE4

discretization is used and we introduce the appropriate

neighboring functions in M However, in this case, the

neighbors of a given node X depend on the color of k. In

order to be more specific, we show in Fig 5 the numbers that

are assigned by the 3-color numbering to the nine neighbors

of x. Clearly, at least eleven functions are needed in

order to include all the neighbors. Namely:
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ps(k) - k + 5h - 2 P- 5 (k4) - k" - 5h + 2
p 4 (k) a k + 4h - 1 4 p(k) - k - 4h + 1
p3(k) -4 + 3h - 1 P_3 (k) - > - 3h + 1 (7)
p (k) - k + 2h - 1 P-2(k) - k - 2h + 1

i . pl(,) - X + h - (X) - k - h

~~ PO (k) - k4~'4

)L-lh+l X+h %+4h-I R6-Zh+l 6+h k+4h-1 )L-Sh+2 X-2h+1 X+h

,-3hel k4+3h-I X-3h+1 % 4+3h-I )-3h+1 k+3h-.

)6-h k 2h-1 x+Sh-2 X-4h+1 -h +2h-1 X-4h+1 -h 6+2h-I

(a) k is white (b) k is black (c) X is red

Fig 5 - The neighbors of k.

If h,2 (H%5), then the functions (7) satisfy the condi-

tions of Theorem 1, and hence, the resulting matrix may be

covered by eleven stripes, which is more than the number of

stripes resulting from the regular numbering. However, the

stripes in this case are non overlapping provided that Mn

does not have very narrow regions. This condition on M. is

better phrased in the following Lemmas:

Lema 1: Assuming 3-color node numbering and 4-nodes quadri-
lateral elements, if each column in Mn contains at least

four elements that are either contiguous or divided into two

i* groups of two contiguous elements each, then

Next(0) - 0 4 h - 2 for any 0 e MQ (8)

where the function Next is as given in Definition 2.

5 Proof: For ease of reference, we indicate the position of a

4f
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node that lies on the intersection of the zth horizontal

line, lza3h-l, and the vth vertical line, ldvdW, of MQ by

the pair (z,v). If M, then Next(8)-O and (8) is trivial.

Hence, let 0 g M. be at position (z,v) and have the color R.

Let also Rl be the color that follows R, that is Rl- black,

red or white, if R- white, black or red, respectively. From

the hypothesis, the vth column of elements in Mn contains

either tour contiguous elements or two pairs of contiguous

elements. That is there exists two horizontal lines a and b

with bba+2 such that all the nodes at positions (c,v) and

(c,v+l), for adcda+2 and b-cdb+2, are in Mn (see Fig 6).

Clearly, we may have one of three cases:

H Vv1 V V+1 Hn V- V.61 v+2
H H

b -

z---

Case (1) Case (2) Case (3)

Fig 6 - Column v of

Case 1; z < a: In this case, a node geMn with color R should

exist at a position (c,v), adc-a+2, and g-0-1 - the number

of lines with color R between lines z and a. In other

words, A-8-1 is less than the number of lines with color R

below line a. Since this number is 3 3 J, the largest

integer less than a13 and given that b+2*3h-i and adb-2, we

obtain g-0-1( t 3 J - h-2. By definition, Next(O)dg, and

hence Next(O)-Odh-2.

! " . ° .; .......:£.. ..3. .. °.. '.. ..>:°.....')... . x v. - - - -.- ._ - - - -; . .. , .... - -. .....,.
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Y' ~Case 2; a ( z ( b: In this case a node AEM. with color R

should exist at a position (c,v), bdcdb+2, and -8-1 is less

than the number of lines with color R between lines a+2 and
b, that is less than 3 J+l. Since b+243h-1 and abl,

then A-8-l< [ ,3-7 J+l - h-2. That is, Next(8)-8 d A-0 dh-2.

Case 3; z > b+2: If v-W and R-red, then, there is no nodes

in Mn  larger than 8. Hence Next(8)=nQ, and Next(8)-8 - the

number of lines of color R above line = L J. But

z~b+3Aa+5%6, which gives Next(8)-Odh-3.

On the other hand, if v<W, or Rpred, then a node AeM,

with color RI should exist at a position (c,v+l) if R-red or

at a position (c,v) if R-white or black, where adcaa+2.

Here, AL-8-1 [ the number of lines of color R above line z]

+ [the number of lines of color R1 below line a]. But at

most L IzJ lines with color R may be above line z, and at

most tafj lines with color RI may be below line a. Hence

A-8-1 3 L J + L 3 j L-3,. Given that zua+5,

then A-8-1 4 h-3, which gives Next(8)-84h-2.[]

Lemma Z: Assuming 3-color node numbering and 4-nodes quadri-I ~ lateral elements. If each column in M contains at least

seven contiguous elements or two separated groups of at

least three contiguous elements each, then

Next(8) - 8 d h-3 for any 0 EM (9

Sketch of the proof: Let 89M. be at position (z,v). Then

from the hypothesis, there exists two horizontal lines a and

L7
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b, b > a+3 such that all the nodes at positions (c,v) and

(cv+l), for aic'a+3 and bicdb+3 are in M . The rest of the

proof proceeds in a way similar to the proof of Lemma L. [

Lemma 3: If for any 8 E MQ, Next (0) - 8 ' p, then,

- 1 (1) a p + 1 for I l,...,n -i (10)

Proof: let I-v(k) and 1+l-v(k). Given that k is numbered

right after k, then any node 0 with k<O<k is not in Mn , and

hence, Next(O)-k. But, from the hypothesis, k-Odp, and

hence, if k)X+l, then X-k<k-O'p. That is k-kp+l. (3

The condition (10) may be translated to an upper limit

*on the number of columns that a stripe in a stiffness matrix

may jump in one row. More specifically, if a, ) and

a are in the same stripe, then condition (10)

limits the value of ak(I+l)ak('). This may be used to

prove that the stripes will not overlap if they are ade-

quately separated from each other.

Tharem 2: Let the nodes in a pierced rectangular grid Mn be

numbered using the 3-color numbering scheme, and let A be

the matrix that results from an FE4 discretization on M.-

If Mn satisfies the conditions of Lemma 1, then A has eleven

non overlapping stripes. Moreover, if M. satisfies the con-

ditions of Lemma 2, then the eleven stripes are strictly non

over lapp ing.

Proof :Consider the eleven functions given by equs (7). It

7T.

. . - % . % - .- ,. , - . " - .- ..- - ,, , -. - - % , . ". ' ' . . - ." . - , - .- - , - - • - .. o% . % .%
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is straight forward to check that

-k l(k) - (k) h-i k--5,...,4 (ll.b)

Clearly, these functions satisfy the conditions in Theorem•
1, and hence, A has eleven stripes Sk, k--5,...5 of the form

Sk -((1,Ok(1)) ; lAtan, and Ok" ) 1) (12)

where

- V(Pk (V-l if Pk(V- 1)) E Mn
Ok(l) otherwise

In order to prove that these str.ipes do not overlap, we

consider any integers 1, m and k such that (1,ak(l))ESk and

(1-m,ak+m(1-m))eSk+m, and we let 1-m = v(k) and I - v(k).

From (12), we get

ak+mm(It-m) - O) - V(Pk+m(k)) - v(Pk(k)) (13)

But from (l1.b) Pk+m(X) -k(k) h m(h-l), and from (1l.a),

Pk(X) - - (P-O). That is

Pk+m(k) - Pk(X) m r(h-l) - (k-k)

S-" Now, if the conditions of Lemma 1 are satisfied, then from

(8) and (10), k-kdm(h-1) and thus Pk+m()-Pk k)-O. By pro-

perty (3) of the renumbering function and equation (13), we

finally obtain ak+m(L-m) b Ok(L ) , which is the condition (2)

for non overlapping stripes. On the other hand, if the con-

ditions of Lemma 2 are satisfied, then from (9) and (10),

* X-km(h-1). This leads to ak~m(1-m) > ak(I), which is, the

U'~

~w.
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condition for strictly non overlapping stripes. []

The result of Theorem 2 proves that if an nxn stiffness

matrix generated by FE4 and 3-color numbering is used as

input to MAT/VEC, then, execution terminates in n global

cycles. In fact, assuming that each y-stream communication

line in MAT/VEC may buffer only one data item, the progres-

sion of the execution may be described by the following com-

putation fronts:

CFt-{at.k,O(t.k) I -5aka5 and ak(t-k)&) t-l,..,n (14)

The 3-color numbering scheme introduced here causes

also the stripes of the matrices obtained from FD5 and FE3

discretizations to be non overlapping (as indicated in Table

1). However for FE6 and FE9 discretizations, this numbering

does not spread the stripes enough and overlap may still

occur. A 5-color numbering scheme is needed in this case to

guarantee non overlapping stripes. The analysis of the 5-

color scheme is similar to that discussed in this section.

Although the property of non-overlapping stripes is

important for the efficient operation of MAT/VEC, the

multi-color numbering scheme has an additional advantage

over the regular scheme. Namely, It produces matrices in

which the stripes are uniformly spread, thus minimizing the

maximum separation between stripes. This is explained in

details in the next section.

.'
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a. IHM M&ILU SEPAATIONI RETWEN STRIP.ES

It was shown in [6] that the multiplication of a

striped matrix by a vector may be performed on the network

,A MAT/VEC efficiently, only if each communication link

directed from a cell k to the previous cell k-l may buffer

at least dmin data items, where dmin is a measure of the

maximum separation between the stripes of the matrix. More

specifically, if the stripes of the matrix are full, then

d min may be estimated from

k Idmain < max(ok+l(t) - ak(t)}m k,t

On the other hand, if the stripes of the matrix are not

full, then

m max{xPt(k+l) - xPt(k)} (15)

where xP t, t=l,...,n, are the x-stream data profiles

corresponding to the execution of MAT/VEC.

In order to observe the effect of the node numbering

scheme on the separation between stripes, we consider a rec-

tangular grid MQ, with H-3h-l horizontal lines and W verti-
.; "-.

cal lines, and we assume that A is the stiffness matrix that

results from FE4 discretization on M If regular node

numbering is applied, then the functions (4) may be used to

construct nine parallel full stripes Sk , k.--4,...,4, that

satisfy for any t

"- -I 1 if k--4,-3,-l,0,2,3

_k+l(t) °k(t) LH-2 if k--2,1

U'.%
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This gives d <H-2=3(h-1). On the other hand, if 3-colormin

numbering is applied, then the functions (7) may be used to

produce eleven parallel full stripes Sk, k--5,...,5, that

satisfy for any t

fh-l if k=-5,-2,1,4a ~(t) a kt
k+1 k(t) Vh if k--4,-3,-1,0,2,3

That is dmin<h. Hence, although the multi-color numbering

produces a matrix with a larger band width (5h-i instead of

3h+l), the stripes are spread within the band almost uni-

formly, thus decreasing the maximum separation between the

stripes from 3(h-l) to h.

The natural question to ask is: does dmin remains

unchanged if M is pierced and the nodes in the resulting

pierced domain Mn are renumbered?. More specifically, if we

consider the stripe structure discussed in Section 4 and

* given by (12), can we construct some profile functions that

correspond to the fronts (14) such that the maximum in (15)

is h?. A positive answer to this question may be provided

by considering the following profile functions

-1xPt(k) - v(Next(Pk(v Ct-k)))) t-l,...,n (16)

where the functton Next is defined in Definition 2.

Clearly, if ak(t-k) ., then from (12), pk(VW (t-k)) E , 0(~-l( -'

and hence Next(pk(v (t-k))) - Pk(V-1(t-k)), which by (12)

and (16) gives

xPt(k) - ak(t-k) if ok(t-k) 1 (17)

-l
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That is, the knots of the profile (16) coincide with the

fronts (14). It is also straight forward to check that

xPt(k+l) if Ok+l(t-k-l) L

Art(k) - xPt (k+l) otherwise

x< xPt+i(k) if ok (t-k)

xPt+l(k) otherwise

which are necessary conditions for profile functions [6].

In order to estimate the maximum in (15), we substitute

S' (16) in (15) and get

d = max{v(Next(Xk+l(X))) - Y(Next(Pk(M)))} (18)
..k,t

1% -'... where X=v -(t) and X=v- (t-l). Now, let 0 - max{g I

/4Pk+l(k) and geM 1. That is 0 is the first node before

-" "Ok+l(X) that is in M (take 0-0 if no such g does exist).

Given that Next(Pk+l(k)) is the first node in M. after

Sk+1 (X), we get v(Next(Pk+l(X))) v(o)+Il. Hence

v(Next(Pk+l(X)))-v(Next(pk(k))) = v(O)-v(Next(pk(X)))+l
(19)

But OAPkl(X) and Next(Pk(.))'pk(X) This gives

'K-, .', - Next(Pk(X)) A k 1() _ Pk(X)

? .. ," ' pk(') - Pk() + h (20)

where we used Pk+l( )-Pk(X)ah, which may be verified from

(7). Also, from (7), X implies that < Pk(X), which

together with the property (3.b) of the renumbering function
K..
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v and (20) gives

v(0) - v(Nextpk))< h (21)

From (21) and (19) in (18), we finally get dmi h. That

is, for matrices which are generated from FE 4 discretiza-

tions on pierced rectangular grids with hight H and 3-color

node numbering, a buffer capacity of His sufficient to
3*

ensure that MAT/VEC terminates execution in n global cycles.

L94
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p* EgpREM1C Q X&T/=X APPLLEU IM s~rILEss MATRCES

As defined in [6], the global cycle of MAT/VEC consists

-. Cof a communication phase and a processing phase. The time

for the processing phase is the time needed to complete a

*floating point multiply/add, which is constant for a given

architecture of the cells of MAT/VEC. On the other hand,

the time for the communication phase depends on the stripe

;structure of the matrix. More specifically, given the stripe

structure of the input matrix and a corresponding data pro-
" tth

file, the time for the communication phase of the t global

cycle, lt4n, is the time for jt data transmission, where

it " max(xPt(k)-xPt-1 (k)) (22)

Assuming that the time needed to complete a

multiply/add operation is rm, and the time needed to

transmit a single data item between two cells is Tc, then

the total execution time of MAT/VEC is

~ n
T T m + Tc E t (23)

t-l

For stiffness matrices resulting from 3-color numbering

Ii-_ and FE4 discretizations, it is easy to show that the profile

* functions (16) lead to

i t h t-1,...,n

However, the actual value of t is usually much smaller than

h, as shown by the following example.
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EXAM=L 1:

3 _I

i-i

(a) The grid (b) The corresponding matrix

Fig 7 - Example 1

Consider the pierced rectangular grid shown in Fig 7(a). It

contains 130 4-nodes rectangular elements and 174 nodes.

The stiffness matrix corresponding to the 3-color numbering
scheme (Fig 7(b)) has a band width b-49 and, in accordance

with Theorem 2, has 11 strictly non-overlapping stripes.

The construction of the data profiles (16) and the applica-

174
tion of (22) gives Ilt - 241. That is MAT/VEC completes

twi

the multiplication of the matrix by a vector in time T

174rm + 241 rc . Note that if the multiplication is performed

on a systolic network [5], then 49 cells are needed and the

computation is completed in time To - 3 58 (rm + Tc). The

saving in both the number of cells and the execution time is

Oi
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obvious. Also, the number of cells v in MAT/VEC is indepen-

dent of the size of the grid, while the number of cells used

in the systolic approach [5], namely b, depends on the size

of the grid (usually, b - 0(\f-)).

In order to observe the effect of the numbering scheme,

we also consider the matrix corresponding to the column-wise

numbering of the grid of Fig 7(a). This matrix has a band-

width bn m 35 and may be covered by nine stripes. However,

the stripes are not "strictly non overlapping", and the con-

struction of the computation fronts (see [6]) shows that 326

global cycles are needed for the completion of the execution

of MAT/VEC. Hence, the size of MAT/VEC is smaller for regu-

lar numbering than in the 3-color numbering (9 cells instead

of 11 cells), but execution is slower (326 global cycles

OP: instead of 174 cycles).

Clearly, general results, of the type proved in the

previous sections, may only be obtained for grids that are,

i, . * in some sense, regular. Howaver, given any sparse matrix,

and in particular a stiffness matrix, a stripe structure may

be constructed for the matrix and the number of computation

fronts needed for the execution of MAT/VEC may be estimated.

XMPL 2:

Highly irregular grids may be obtained if triangular

L elements are used. Consider, for example, the two grids

shown in Fig 8 that are extracted from [9] .The Cuthill-Mckee

'
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(a) (bN
Fig 8 - Irregular grids

numbering scheme (2] is used for both grids starting from

the encircled nodes. The stiffness matrix corresponding to

V the grid of Fig 8(a) is of order 145 and has a band-width

25. The minimum number of stripes that may cover the matrix

is 9 (overlapping) and the number of computation fronts is

found to be 283 fronts. For the grid of Fig 8(b), the order

of the matrix is 289 and the bandwidth is 49. The number of

stripes is found to be 13 and the corresponding number of

computation fronts is 533. By comparision with systolic mul-

tiplication, in which all trivial operations are performed,

it is clear that the organization of the non-zero elements

into a stripe structure, which is independent of the size of

the problem, reduces the hardware needed for the completion

of the multiplication, without slowing down execution.

Finally, we note that the grids in Fig 8 are
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constructed without any consideration for the regularity of

the stripe structure. More specifically, the same domains

may be easily covered by grids that have the same element-

density distribution of the given grids, but that are iso-

morphic to some pierced rectangular grids. The matrices

generated from these grids should obey the results of Sec-

tion 3and 4.

7...J

dJ g
:o,.
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1. T ON

It is shown that the number of stripes v in the stripe

structure of a stiffness matrix is independent of the size

of the problem, and is much smaller than the band-width of

the matrix. For pierced rectangular domains, the stripe

count v may be estimated analytically and the stripe struc-

ture of the matrix may be constructed from the finite ele-

ment grid.

,The multicolor node numbering presented in this paper

has two favorable effects on the resulting matrix: First, it

produces non-overlapping stripes, which prevents any data

conflict during the execution of MAT/VEC, and second, it

distributes the stripes uniformly, which reduces the maximum

separation between stripes and thus minimizes the number of

buffers needed in MAT/VEC.

In brief, the construction of stripe structures for

stiffness matrices allows for the efficient utilization of

VLSI networks. Moreover, the number of cells in such net-

works is determined by the stripe count v, which is indepen-

dent of the size of the problem.

4.

'V"

',)4
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